5 research outputs found

    Modeling Left Ventricle Wall Motion Using Tagged Magnetic Resonance Imaging

    Get PDF
    A two-parameter computational model is proposed for the study of the regional motion of the left ventricle (LV) wall using tagged magnetic resonance imaging (tMRI) data. In this model, the LV wall motion is mathematically decomposed into two components, an isotropic deformation of the LV wall tissues along the short axis of LV and a non-uniform rotation of the tissues along the long axis of LV. The deformation and rotation parameters are determined by fitting the model to tMRI images of the short-axis planes of the LV wall. To validate this model, the tMRI images of the LV wall at the midventricular, apical and basal levels from eight subjects including healthy human, healthy and diabetic rats were studied. The result showed that this model is very effective in studying the LV wall motion and function in both small animals and human. With this model, the torsion, strain, and strain rate of the LV wall tissues can easily be calculated analytically at different phases of a cardiac cycle. It was found that the ratio of the torsion at endocardium to the torsion at epicardium is a constant during the cardiac motion even though the torsion varies with time significantly. The value of this constant of motion equals the ratio of the end diastolic radii of the LV wall at endocardium and epicardium and, therefore, is approximately the same for rats and human. This dissertation also includes a study of effects of exercise training on diabetic heart. In that study, global cardiac functions were measured using high field MRI and it was found that the global functions of diabetic heart could be improved by the training

    Construction of a two-parameter empirical model of left ventricle wall motion using cardiac tagged magnetic resonance imaging data

    Get PDF
    Background A one-parameter model was previously proposed to characterize the short axis motion of the LV wall at the mid-ventricle level. The single parameter of this model was associated with the radial contraction of myocardium, but more comprehensive model was needed to account for the rotation at the apex and base levels. The current study developed such model and demonstrated its merits and limitations with examples. Materials and methods The hearts of five healthy individuals were visualized using cardiac tagged magnetic resonance imaging (tMRI) covering the contraction and relaxation phases. Based on the characteristics of the overall dynamics of the LV wall, its motion was represented by a combination of two components - radial and rotational. Each component was represented by a transformation matrix with a time-dependent variable α or β. Image preprocessing step and model fitting algorithm were described and applied to estimate the temporal profiles of α and β within a cardiac cycle at the apex, mid-ventricle and base levels. During this process, the tagged lines of the acquired images served as landmark reference for comparing against the model prediction of the motion. Qualitative and quantitative analyses were performed for testing the performance of the model and thus its validation. Results The α and β estimates exhibited similarities in values and temporal trends once they were scaled by the radius of the epicardium (repi)and plotted against the time scaled by the period of the cardiac cycle (Tcardiac) of each heart measured during the data acquisition. α/repi peaked at about Δt/Tcardiac=0.4 and with values 0.34, 0.4 and 0.3 for the apex, mid-ventricle and base level, respectively. β/repi similarly maximized in amplitude at about Δt/Tcardiac=0.4, but read 0.2 for the apex and - 0.08 for the base level. The difference indicated that the apex twisted more than the base. Conclusion It is feasible to empirically model the spatial and temporal evolution of the LV wall motion using a two-parameter formulation in conjunction with tMRI-based visualization of the LV wall in the transverse planes of the apex, mid-ventricle and base. In healthy hearts, the analytical model will potentially allow deriving biomechanical entities, such as strain, strain rate or torsion, which are typically used as diagnostic, prognostic or predictive markers of cardiovascular diseases including diabetes

    Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging

    Get PDF
    BACKGROUND: Diabetes is a major risk factor for cardiovascular disease. In particular, type 1 diabetes compromises the cardiac function of individuals at a relatively early age due to the protracted course of abnormal glucose homeostasis. The functional abnormalities of diabetic myocardium have been attributed to the pathological changes of diabetic cardiomyopathy. METHODS: In this study, we used high field magnetic resonance imaging (MRI) to evaluate the left ventricular functional characteristics of streptozotocin treated diabetic Sprague-Dawley rats (8 weeks disease duration) in comparison with age/sex matched controls. RESULTS: Our analyses of EKG gated cardiac MRI scans of the left ventricle showed a 28% decrease in the end-diastolic volume and 10% increase in the end-systolic volume of diabetic hearts compared to controls. Mean stroke volume and ejection fraction in diabetic rats were decreased (48% and 28%, respectively) compared to controls. Further, dV/dt changes were suggestive of phase sensitive differences in left ventricular kinetics across the cardiac cycle between diabetic and control rats. CONCLUSION: Thus, the MRI analyses of diabetic left ventricle suggest impairment of diastolic and systolic hemodynamics in this rat model of diabetic cardiomyopathy. Our studies also show that in vivo MRI could be used in the evaluation of cardiac dysfunction in this rat model of type 1 diabetes
    corecore